
Computational and Information-Theoretic Soundness and
Completeness of Formal Encryption

Pedro Adão ∗

Center for Logic and Computation
IST, Lisbon, Portugal
pad@math.ist.utl.pt

Gergei Bana †

Department of Mathematics
University of Pennsylvania, Philadelphia, USA

bana@math.upenn.edu

Andre Scedrov ‡

Department of Mathematics
University of Pennsylvania, Philadelphia, USA

scedrov@math.upenn.edu

Abstract

We consider expansions of the Abadi-Rogaway logic of
indistinguishability of formal cryptographic expressions.
We expand the logic in order to cover cases when par-
tial information of the encrypted plaintext is revealed.
We consider not only computational, but also purely
probabilistic, information-theoretic interpretations. We
present a general, systematic treatment of the expansions
of the logic for symmetric encryption. We establish gen-
eral soundness and completeness theorems for the inter-
pretations. We also present applications to specific set-
tings not covered in earlier works: a purely probabilistic
one based on One-Time Pad, and computational settings
of the so-called type-2 (which-key revealing) and type-
3 (which-key and length revealing) encryption schemes
based on computational complexity.

∗ Partially supported by FCT grant SFRH/BD/8148/2002.
Additional support from FEDER/FCT project Fiblog
POCTI/2001/MAT/37239 and FEDER/FCT project Quant-
Log POCTI/MAT/55796/2004.

† Partially supported by OSD/ONR CIP/SW URI “Software
Quality and Infrastructure Protection for Diffuse Computing”
through ONR Grant N00014-01-1-0795. Additional support
from NSF Grant CNS-0429689.

‡ Partially supported by OSD/ONR CIP/SW URI “Software
Quality and Infrastructure Protection for Diffuse Comput-
ing” through ONR Grant N00014-01-1-0795 and OSD/ONR
CIP/SW URI “Trustworthy Infrastructure, Mechanisms, and
Experimentation for Diffuse Computing” through ONRGrant
N00014-04-1-0725. Additional support from NSF Grants
CCR-0098096 and CNS-0429689.

1. Introduction

Designing and verifying security protocols are com-
plex problems; a certain level of idealization is needed
in order to provide manageable mathematical treat-
ment of the protocols and the notion of security. Ide-
alizations necessarily omit some properties of the real
system, which might lead to leaks in the security. Even
if the protocols themselves are quite simple, which is of-
ten the case, the security properties that they are sup-
posed to achieve might be rather subtle and hard to for-
mulate. Checking whether protocols really satisfy the
properties may be an almost impossible task. Difficul-
ties typically arise from subtleties of the cryptographic
primitives themselves or while combining them. Secu-
rity protocols are required to work properly when mul-
tiple instances are carried out in parallel, in which case
a malicious intruder may combine data from separate
sessions in order to confuse honest participants. A num-
ber of methods and different levels of idealizations are
used for analyzing security protocols, the two main ap-
proaches being a highly abstract treatment with the
help of formal logic and a more detailed description
using computational complexity and probability the-
ory.

In the last two decades these two major directions
in cryptography have developed apart from each other.
The formal approach uses simple, manageable formal
languages to describe cryptographic protocols. This ap-
proach is amenable to automation, it is suitable for
computer tools, but its accuracy is often unclear. The
computational approach is harder to handle mathemat-
ically, it involves probability theory, and considers lim-
its in computing power. In the computational approach

proofs are done by hand, but this approach is more ac-
curate and hence widely accepted.

There have been several research efforts recently to
relate the symbolic model of cryptographic techniques
and the computational model based on probabilistic
polynomial-time computability, including [15, 2, 5, 1,
18, 3, 11, 19, 9]. These efforts are developing rigorous
mathematical treatment of the relationship between
the two models.

The approach in [2], with which we are concerned
here, uses a simple formal structure by building mes-
sages from formal keys and bits via repeated pairing
and encrypting, constructing a set of formal expres-
sions. These formal expressions are then interpreted in
a computational framework of symmetric encryptions.
Through this interpretation, an ensemble of probabil-
ity distributions on the set of finite bit strings is as-
signed to each formal expression.

In each of the formal and the computational models,
security is stated by means of a certain notion of equiv-
alence. In the formal model, equivalence of symbolic ex-
pressions is defined inductively on the structure of ex-
pressions. In the computational model, equivalence of
ensembles of probability distributions is given by the
standard notion of computational indistinguishability
[21]. The question is, what happens to the formal equiv-
alence through the interpretation. If it is true that for-
mal equivalence of any two symbolic expressions im-
plies computational indistinguishability of their inter-
pretations, then we say that soundness holds. If the
other direction is true, namely, computational indis-
tinguishability of the interpretations of any two sym-
bolic expressions implies that the expressions are for-
mally equivalent as well, we then say that complete-
ness holds.

Related work includes the seminal work by Abadi
and Rogaway[2], where they prove soundness in the
case of so-called type-0 symmetric encryption schemes.
Completeness, for the same case, was proved by Mic-
ciancio and Warinschi [18] and Horvitz and Gligor [11].
Extensions of the method include public-key encryp-
tion [19, 17], composite keys [14], plaintext-aware en-
cryption schemes [9, 10], and signature schemes [6, 12].

Our Work. Our work extends applicability of the
Abadi-Rogaway (AR) logic. By expanding the orig-
inal AR logic, we show how to adjust the formal
notion of equivalence in order to maintain sound-
ness and completeness when the symmetric encryption
scheme that hosts the interpretation (computa-
tional or information-theoretic) leaks partial informa-
tion. That is, we show that distinctions among security
levels of computational or information-theoretic en-
cryption schemes can often be faithfully reflected in

the symbolic model.

In order to provide a general treatment, we
also consider interpretations in purely probabilistic,
information-theoretic encryption schemes besides com-
putational encryption schemes. We use a general prob-
abilistic framework that includes as special cases both
the computational and purely probabilistic encryp-
tion schemes (such as One-Time Pad). The advantage
of this presentation is that there is no need to formu-
late general statements twice when they are true for
both computational and information-theoretic mod-
els.

We prove general soundness and completeness theo-
rems for our logics of formal symmetric encryptions.
These theorems essentially claim that if soundness
holds for a certain subset of the formal expressions,
then soundness is valid for all expressions; similarly re-
garding completeness. As expected, it is necessary to
assume soundness for a greater subset of expressions
than for completeness in order to derive the theorems.
The reason is that the probabilistic model is a more
detailed description than the symbolic one: Indistin-
guishability of distributions of two n-tuples of random
variables does not follow from indistinguishability of
each two corresponding pairs in the n-tuples. In con-
trast, equivalence of two n-tuples of formal expressions
can be derived from pairwise equivalence.

The rest of the paper is organized as follows. We
start by presenting the Abadi and Rogaway formalism
for logics of Formal Encryption. In Section 3 we intro-
duce the fundamentals of the Computational Model. In
Sections 4 and 5 we discuss Soundness and Complete-
ness for type-2 encryption schemes and One-Time Pad.
Finally, in Section 6 we present our general probabilis-
tic framework, which includes both the computational
and the information-theoretic encryption schemes as
special cases. We prove our general soundness and com-
pleteness results and demonstrate the soundness and
completeness of type-1, type-2, type-3 and OTP en-
cryption schemes as corollaries of the general theorems.
This is the main technical contribution of this paper.
Finally, Section 7 concludes with a discussion of pos-
sible expansions of our logic as well as relations with
other existing models.

We want to thank M. Abadi, J. Guttman, J. Herzog,
R. Küsters, D. Micciancio, J. Mitchell and B. Warin-
schi for their valuable comments and informative dis-
cussions. This work was done while the first author was
a visiting student at the University of Pennsylvania.

2

2. The AR Logic of Formal Encryption

The Abadi-Rogaway logic of formal encryption is
simple to treat, but is complex enough to reveal many
subtleties that might occur in a protocol. In this for-
malism an expression represents a multitude of mes-
sages that can be exchanged during a protocol. It can
also be thought of as the data that an adversary has
collected via observing a protocol. In this language all
the expressions are built from keys and blocks of bits
via pairing and encryption. We will start by present-
ing the original definitions introduced in [2]. Later, in
Sections 4, 5 and 6, we will extend the AR definition
of equivalence so that we can deal with different no-
tions of security.

Definition 2.1. Let Keys = {K1,K2,K3, ...} be an
infinite discrete set of symbols and Blocks ⊆ {0, 1}∗
a nonempty subset. We define the set of expressions,
Exp, by the grammar:

Exp ::= Keys | Blocks | (Exp,Exp) | Enc
Enc ::= {Exp}Keys

We will denote by Keys(M) the set of all keys occur-
ring in M . We define the set of subexpressions of an
expression M , sub (M), as the smallest subset of ex-
pressions containing M such that:

• (M1,M2) ∈ sub (M) =⇒ M1 ∈
sub (M) and M2 ∈ sub (M), and

• {M ′}K ∈ sub (M) =⇒ M ′ ∈ sub (M).

We say that N is a subexpression of M , and denote it
by N v M , if N ∈ sub (M).

We say that a key K encrypts an expression N in
M if there is an expression N ′, such that N v N ′ and
{N ′}K v M . This induces a binary relation ≺M on
Keys(M), that is, K ≺M K ′ iff K ′ encrypts K in M .
We say that a subset S of Keys(M) is cyclic in M if
the restriction of ≺M onto S is cyclic.

The reader should be aware that there are several
different notions of cyclicity. According to our defini-
tion, expressions such as {{M}K}K are not considered
cyclic.

Expressions are unambiguous, i.e., (M,N) =
(M ′, N ′) means that M = M ′ and N = N ′, and
{M}K = {M ′}K′ means that M = M ′ and K = K ′.

We define the set of visible subexpressions of an ex-
pression M , vis (M), as the smallest subset of expres-
sions containing M such that:

• (M1,M2) ∈ vis (M) =⇒ M1 ∈
vis (M) and M2 ∈ vis (M), and

• {M ′}K and K ∈ vis (M) =⇒ M ′ ∈ vis (M).

We are now ready to define the set of recoverable keys
of an expression M . The recoverable keys are those that
an adversary can recover by looking at an expression.
We define it as R-Keys(M) = vis (M) ∩Keys(M). For
more details, we refer to the example below, and [2].

We say that an encryption term {M ′}K v M
is undecryptable in M if K /∈ R-Keys(M). Among
the non-recoverable keys of an expression M , there is
an important subset denoted by B-Keys(M). The set
B-Keys(M) contains those keys which encrypt the out-
ermost undecryptable terms. Formally, for an expres-
sion M , we define B-Keys(M) as

B-Keys(M) =
{
K ∈ Keys(M) | {M}K ∈ vis (M)

but K 6∈ R-Keys(M)

}

Example 2.2. Let M be the following expression

(({0}K6 , {{K7}K1}K4), ((K2,
{({001}K3 , {K6}K5)}K5), {K5}K2)).

In this case, Keys(M) = {K1,K2,K3,K4,K5,K6,K7}.
It is of course not necessary to use the first 7 keys;
we could have used others. The set of recoverable keys
is R-Keys(M) = {K2,K5,K6}, because an adversary
sees the non-encrypted K2, and with that he can de-
crypt {K5}K2 , hence recovering K5; then, decrypting
twice with K5, K6 can be revealed. We also have that
B-Keys(M) = {K3,K4}.

Abadi and Rogaway also defined an equivalence no-
tion on the set of expressions. This equivalence ex-
presses the fact that an adversary cannot distinguish
certain messages. Abadi and Rogaway introduced this
notion assuming that an adversary cannot distinguish
any two undecryptable formal ciphers. However, if we
want to express the fact that some partial information
may be revealed about the plaintext or about the en-
crypting key, we need to adjust the definition of the
equivalence. We first discuss two specific cases, the
so called which-key revealing encryption schemes and
the One-Time Pad (Sections 4 and 5), and adjust the
equivalence-notion in the formal case, and then give a
general treatment of such adjustments (Section 6).

3. Computational Model

In the Computational Model of Cryptography each
message is a sequence of bits so, let strings = {0, 1}∗.
In order to be able to build up longer messages from
shorter ones, we assume that an injective pairing func-
tion [·, ·] : strings × strings → strings is given. Let
plaintexts, ciphertexts and keys be nonempty sub-
sets of strings and let 0 be a fixed particular element
in plaintexts.

3

Definition 3.1 (Encryption Scheme). A computa-
tional symmetric encryption scheme is a tripple Π =
(K, E,D) where

• K : parameters × coins → keys is a key-
generation algorithm with security parameter η ∈
parameters = N;

• E : keys× strings× coins → ciphertexts is an
encryption function;

• D : keys× strings → plaintexts is such that for
all k ∈ keys and ω ∈ coins,

Dk(Ek(m,ω)) = m for all m ∈ plaintexts,
Dk(Ek(m′, ω)) = 0 for all m′ 6∈ plaintexts.

All of K, E and D are computable in polynomial
time in the size of the input, not counting the coins.

Computational Equivalence. In the computational set-
ting, we assume that an adversary has access to com-
puters with limited computational power. The notion
of security is that an adversary should have very small
probability of getting valuable information about en-
crypted messages, which is expressed mathematically
as having little chance to tell different ciphertexts
apart. Namely, messages are in fact ensembles (because
of the security parameter) of random variables (since
key generation and encryption are random), and the
adversary is trying to distinguish these random ensem-
bles. In order to express what it means to have little
chance to distinguish two ensembles, we need the no-
tions of negligible function and computational indistin-
guishability:

Definition 3.2. A function ε : N → R is said to be
negligible, if for any c > 0, there is an nc ∈ N such that
ε(η) ≤ η−c whenever η ≥ nc.

Definition 3.3. Let Fη and Gη (for η ∈ parameters)
be two sequences of random variables taking values in
strings. Let Dist(Fη) and Dist(Gη) denote their prob-
ability distributions. We say that the ensembles Fη and
Gη (or, also, that Dist(Fη) and Dist(Gη)) are com-
putationally indistinguishable, if for any probabilistic
polynomial-time adversary Aη,

Pr
[
x

R←− Dist(Fη) : Aη(x) = 1
]
−

Pr
[
x

R←− Dist(Gη) : Aη(x) = 1
]

is a negligible function of η.

Now that we know the meaning of indistinguisha-
bility of two ensembles, we can define security as the
incapacity for an adversary to distinguish certain en-
cryption oracles. For any key k ∈ keys, an encryp-
tion oracle Ek(·) is an algorithm that, on an input

x ∈ strings, outputs Ek(x). The oracle Ek(0), on an
input x ∈ strings, outputs Ek(0) In their seminal pa-
per, AR defined several different notions of security.
They defined type-0 security as follows:

Definition 3.4. We say that a computational en-
cryption scheme is type-0 secure, if no probabilis-
tic polynomial-time adversary can distinguish the
pair of oracles (Ek(·), Ek′(·)) from the pair of ora-
cles (Ek(0), Ek(0)) as k and k′ are randomly gener-
ated. That is, for any probabilistic polynomial-time
algorithm, Aη, querying either (Ek(·), Ek′(·)) or
(Ek(0), Ek(0)),

Pr
[
k, k′ R←− Kη : AEk(·),Ek′ (·)

η = 1
]
−

Pr
[
k

R←− Kη : AEk(0),Ek(0)
η = 1

]

is a negligible function of η.

Intuitively the above formula says the following: The
adversary is given one of two pairs of oracles, either
(Ek(·), Ek′(·)) or (Ek(0), Ek(0)) (where the keys were
randomly generated prior to handing the pair to the ad-
versary), but he does not know which. Then, the adver-
sary can do all kinds of (probabilistic polynomial-time)
computations including several queries to the oracles.
He can even query the oracles with messages that de-
pend on previously given answers of the oracles. We
should remark that the keys used by the oracles for en-
cryption do not change while the adversary queries the
oracles. After this game, the adversary has to decide
with which pair of oracles he was interacting. The ad-
versary wins the game if he can decide for the correct
one with a probability bigger than 1

2 , or equivalently
if he can distinguish between the two. If this differ-
ence is negligible, as a function of η, we say that the
two pairs are indistinguishable for the adversary, and
hence the encryption is type-0 secure.

What type-0 security is meant to express is that not
only no adversary can tell whether the oracles encrypt
the plaintexts that the adversary submits or that they
encrypt 0 instead, but he cannot tell either whether
the encryptions by the pair were done with the same
key, or with keys that had been separately generated.
All the work presented by AR was done using this se-
curity level. It is possible to relax the power of the en-
cryption scheme and by that we obtain several differ-
ent notions of security.

Definition 3.5. We say that a computational en-
cryption scheme is type-2 secure, if no probabilistic
polynomial-time adversary can distinguish the oracles
Ek(·) and Ek(0) as k is randomly generated. That is,
for any probabilistic polynomial-time algorithm, Aη,

4

querying either Ek(·) or Ek(0),

Pr
[
k

R←− Kη : AEk(·)
η = 1

]
−Pr

[
k

R←− Kη : AEk(0)
η = 1

]

is a negligible function of η.

Here, we do not require that encryption with differ-
ent keys should not be possible to be detected, as was
the case in the type-0 security. This notion is very con-
venient to discuss the expansion of the Abadi-Rogaway
logic to match this case, and we therefore stick to it for
the moment. Nevertheless, as we will see later, our work
can be applied to several other types of security.

4. Soundness and Completeness for
Type-2 Schemes

In order to prove any relation between the formal
and computational worlds, we need to translate a for-
mal expression to something that computational the-
ory can handle. The translation, which we call interpre-
tation results in a sequence of random variables (and
their distributions) indexed by the security parameter.
Namely, to each valid formal expression M and secu-
rity parameter η, the interpretation assigns a random
variable Φη(M) taking values in strings. Intuitively,
the interpretation works as follows: blocks are inter-
preted as strings; each key is interpreted by running
the key generation algorithm; pairs are translated into
computational pairs and formal encryptions terms are
interpreted by running the encryption algorithm.

AR presented such interpretation in an algorithmic
way, which we include in the appendix. We will denote
by [[M]]Φη the distribution of Φη(M) and by [[M]]Φ the
ensemble of {[[M]]Φη}η∈N.

4.1. Formal Equivalence, and Expansion of
the Logic for Type-2 Schemes

Formal equivalence is meant to express that for an
adversary, certain messages look the same. In the orig-
inal AR treatment (that was based in type-0 security),
any two encryption terms that were encrypted with
non-recoverable keys looked the same to the adversary.
For that, formal encryption terms encrypted with non-
recoverable keys in an expression were replaced with a
box, ¤, and if the resulting pattern agreed with the pat-
tern of another expression up to key-renaming, then the
two expressions were said to be equivalent. In a type-
2 secure encryption scheme, an adversary may distin-
guish encryption terms that were encrypted with dif-
ferent keys, and therefore using the same box for all
replacement will not work, the boxes have to be in-
dexed by the encrypting keys. The patterns are hence

defined in the following way:

Pat ::= Keys | Blocks | (Pat,Pat) | {Pat}Keys |
| ¤Keys

The pattern of an expression for the type-2 case is
defined as follows:

Definition 4.1. For an expression M , the pattern of
M , pattern(M), is obtained from M by replacing each
undecryptable term {M ′}K v M by ¤K .

Definition 4.2. We say that two valid expressions M
and N are equivalent, and denote it by M ∼= N , if there
is a key-renaming function, i.e., a bijection σ : Keys →
Keys, such that pattern(M)σ = pattern(N), where for
any pattern Q, Qσ denotes the pattern obtained from
Q by replacing all occurrences of keys K in Q by σ(K)
(including those occurrences as indexes of ¤).

Example 4.3. Let N be the expression

(({0}K8 , {100}K1), ((K7,
{({0101}K9 , {K8}K5)}K5), {K5}K7)).

We have that R-Keys(N) = {K5, K7,K8}, and so, in
this case, pattern(N) is

(({0}K8 , ¤K1), ((K7, {(¤K9 , {K8}K5)}K5), {K5}K7)).

Defining M as in Example 2.2, pattern(M) is

(({0}K6 , ¤K4), ((K2, {(¤K3 , {K6}K5)}K5), {K5}K2)).

Now, if we replace K6 → K8, K4 → K1, K2 → K7,
K3 → K9 and K5 → K5 in M , the pattern of M turns
into the pattern of N , so M and N are equivalent.

With these definitions, the following soundness and
completeness theorems can be proved:

Theorem 4.4. Let M and N be expressions such that
B-Keys(M) and B-Keys(N) are not cyclic in M and
N respectively. Let Π be a type-2 secure encryption
scheme. Then, M ∼= N implies [[M]]Φ ≈ [[N]]Φ.

In the other direction we have that, [[M]]Φ ≈ [[N]]Φ
implies M ∼= N for arbitrary expressions M and N
if and only if the following conditions hold: for any
K,K ′,K ′′ ∈ Keys, B ∈ Blocks, M,M ′, N, N ′ ∈ Exp,
(i) no pair of [[K]]Φ, [[B]]Φ, [[(M, N)]]Φ, [[{M ′}K′]]Φ are
equivalent with respect to ≈;
(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then K ′ =
K ′′;
(iii) if [[({M}K , {M ′}K)]]Φ ≈ [[({N}K′ , {N ′}K′′)]]Φ
then K ′ = K ′′.

Let us now discuss the conditions in the complete-
ness part above in some detail. Condition (i) requires
that different types of objects, blocks, keys, pairs and

5

encryption terms should be distinguishable to achieve
completeness; this can be ensured by tagging each ob-
ject with its type, as suggested in [2]. We call condi-
tion (ii) weak confusion-freeness. This condition is in
fact equivalent to weak key-authenticity that was in-
troduced by Horvitz and Gligor in [11] in the case of
type-0 schemes; it essentially means that decrypting
with the wrong key should be detectable in a proba-
bilistic sense. Finally, condition (iii) requires that en-
cryption with different keys should be detectable. The
type-2 condition in Definition 3.5 allows that encrypt-
ing with different keys may be detectable, but it does
not require it. That is good for soundness, but in or-
der to achieve completeness for the formal equivalence
we introduced, we need to assume that encryption with
different keys is detectable. A purely computational
condition that implies condition (iii) is to require that
for some probabilistic polynomial-time algorithm Aη,

Pr
[
k, k′ R←− Kη : AEk(·),Ek′ (·)

η = 1
]
−

Pr
[
k

R←− Kη : AEk(·),Ek(·)
η = 1

]

is not a negligible function of η.
We can prove similar theorems for length revealing

(type-1) encryption schemes and both which-key and
length-revealing (type-3) encryption schemes. We do
not state those theorems here since they will follow as
corollaries of our general theorems.

5. Soundness and Completeness for
One-Time Pad

Besides the computational, there are other possi-
ble important notions of indistinguishability. For ex-
ample, we may say that two distributions are indistin-
guishable, if they are identical. We can still consider in-
terpretations of formal expressions, and check sound-
ness and completeness for this case. As an example,
let us now consider a specific implementation of the
One-Time Pad.

Let strings := {0, 1}∗ with the following pairing
function: For any two strings x, y ∈ strings we can de-
fine the pairing of x and y as [x, y] := 〈x, y, 0, 1|y|〉
where 〈 , , ... , 〉 denotes the concatenation of the
strings separated by the commas, 1m stands for m
many 1’s, and for any x ∈ {0, 1}∗, |x| denotes the
length of the string. The number of 1’s at the end in-
dicate how long the second string is in the pair, and
the 0 separates the strings from the 1’s. Let blocks be
those strings that end with 001. The ending is just a
tag, it shows that the meaning of the string is a block.

Key-Generation. In case of the OTP, the length of
the encrypting key must match the plaintext, hence we

need a separate key-generation for each length. That
is, for each n > 3, Kn is a random variable over
some (ΩK,n,PrK,n) such that its values are equally
distributed over keysn := {k | k ∈ strings, |k| =
n, k ends with 010}. Let keys :=

⋃∞
4 keysn. For

k ∈ keys, let core(k) denote the string that we get
from k by cutting the tag 010.

Encryption. Let the domain of the encryption
function, DomE , be those elements (k, x) ∈ keys ×
strings, for which |k| = |x| + 3, and let Ek(x) :=
〈core(k) ⊕ x, 110〉. The tag 110 informs us that the
string is a ciphertext. Notice that this encryption is
not probabilistic, Ek(x) is not a random variable (or, in
other words a constant random variable). Notice also,
that the tag of the plaintext is not dropped, that part
is also encrypted.

Decryption. The decryption function Dk(x) is de-
fined whenever |k| = |x|, and, naturally the value of
Dk(x) is the first |k| − 3 bits of k ⊕ x.

Indistinguishability. As we mentioned, let us now
call two distributions indistinguishable, if they are
identical.

5.1. Interpretation for One-Time Pad

In case of the OTP, lengths of the messages, and of
the keys have vital importance. This notion though is
not reflected in the formal view as we defined it in sec-
tion 2. Therefore, we have to expand the logic so that
we can talk about the length of an expression.

Definition 5.1. We assume that some length func-
tion l : Keys → {4, 5, ...} is given on the keys symbols.
The length of a block is defined as l(B) := |B|+ 3. We
added 3 to match the length of the tag. We define the
length function on any expression in Exp by induction:
l((M,N)) := l(M) + 2l(N) + 1, l({M}K) := l(M) + 3
if l(M) = l(K)− 3, and l({M}K) = 0 otherwise.

The valid expressions are defined as those expres-
sions in which the length of the encrypted subexpres-
sions match the length of the encrypting key, and, in
which no key is used twice to encrypt. This latter con-
dition is necessary to prevent leaking information be-
cause of the properties of the OTP.

Definition 5.2. We define the valid expressions for
OTP as ExpOTP = {M ∈ Exp | M ′ v M implies
l(M ′) > 0, and each key encrypts at most once in M}.

The interpretation for the OTP is defined similarly
to the type-2 case with some minor changes regarding
the tagging of the messages, and there is no security
parameter here, so the interpretation outputs one ran-
dom variable only for each formal expression. For full
details check the algorithm in the appendix.

6

5.2. Formal Equivalence and Expansion of
the Logic for One-Time Pad

As in the case of type-2 encryption schemes, here
we have to find also a suitable equivalence relation for
the formal expressions. We now assign different boxes
to encryption terms of different length. (We could use
boxes indexed by the keys here too, see Example 6.24.)
That is, we define the patterns as:

Pat ::= Keys | Blocks | (Pat,Pat) | {Pat}Keys |
| ¤{4,5,... }

In the case of One-Time Pad, the patterns, and equiv-
alence of expressions can be defined the following way:

Definition 5.3. For a valid expression M , the pat-
tern of M , pattern(M), is obtained by replacing each
undecryptable term {M ′}K v M by ¤l({M ′}K), where
l({M ′}K) denotes the formal length of {M ′}K (which
is in fact the same as l(K)).

Definition 5.4. We say that two expressions M and
N are equivalent, and denote it by M ∼=OTP N , if there
exists a length-preserving key-renaming function such
that pattern(M)σ = pattern(N).

Then, the following soundness and completeness
theorems can be proven:

Theorem 5.5. Let M and N be two valid expressions
in ExpOTP such that B-Keys(M) and B-Keys(N) are
not cyclic in M and N respectively. Then, M ∼=OTP

N implies that [[M]]Φ and [[N]]Φ are the same proba-
bility distributions.

Let M and N be two valid expressions in ExpOTP.
Then if [[M]]Φ and [[N]]Φ have the same probability dis-
tributions, we have that M ∼=OTP N .

In the completeness theorem for OTP we do not
have any side condition as in Theorem 4.4. Note that
here the analogue of the condition (i) from Theorem 4.4
is immediate due to the tagging. For (ii), the analogue
also follows from the tagging since decrypting with the
wrong key will result in a meaningless text. The ana-
logue of (iii) is meaningless in this case since we just
encrypt at most once with each key.

6. A General Treatment for Symmetric
Encryption

We provide a general probabilistic framework for
symmetric encryption, which contains both the com-
putational and the information-theoretic description as
special cases. Keys, plaintexts and ciphertexts are ele-
ments of some discrete set strings. This is ({0, 1}∗)∞
in the case of a computational treatment, and it is

{0, 1}∗ for the information-theoretic description. The
elements of ({0, 1}∗)∞ are sequences in {0, 1}∗, corre-
sponding to parametrization by the security parame-
ter.

A fixed subset, plaintext ⊆ strings represents the
messages that are allowed to be encrypted. Another
subset, keys ⊆ strings is chosen for the possible en-
crypting keys. In order to be able to build up longer
messages from shorter ones, we assume that an in-
jective pairing function is given: [. , .] : strings ×
strings → strings. The range of the pairing function
will be called pairs: pairs := Ran[. , .]. A symmet-
ric encryption scheme has the following constituents:

Key-generation. Key-generation is represented by
a random variable K : ΩK → keys, over a discrete
probability field (ΩK, PrK). In a given scheme, more
than one key-generation is allowed.

Encryption. For a given k ∈ keys, and a given
x ∈ plaintext, Ek(x) is a random variable over some
discrete probability field (ΩE , PrE). The values of this
random variable are in strings and are denoted by
Ek(x)(ω), whenever ω ∈ ΩE .

Decryption. An encryption must be decryptable,
so we assume that for each k ∈ keys, a function D :
(k, x) 7→ Dk(x) is given satisfying Dk

(
Ek(x)(ω)

)
= x

for all ω ∈ ΩE and x ∈ plaintext.
The notion of indistinguishability is important both

in case of computational and information-theoretic
treatments of cryptography. It expresses when there is
only very small probability to tell two probability dis-
tributions apart.

Indistinguishability. We assume that an equiva-
lence relation called indistinguishability is defined on
distributions over strings. We will denote this rela-
tion by ≈. We will also say that two random variables
taking values in strings are equivalent (indistinguish-
able) if (and only if) their distributions are equiv-
alent; we will use ≈ for denoting this equivalence
between random variables as well. For ≈, we re-
quire the followings:
(i) Random variables with the same distribution are in-
distinguishable;
(ii) Constant random variables are indistinguish-
able if and only if the constants are the same;
(iii) For random variables F : ΩF → strings
and G : ΩG → strings, if F ≈ G, the follow-
ings must hold: If πi denotes the projection onto
one of the components of strings × strings, then
πi ◦ [·, ·]−1 ◦ F ≈ πi ◦ [·, ·]−1 ◦G for i = 1, 2;
(iv) If F ′ : ΩF → strings, G′ : ΩG → strings
are also indistinguishable random variables such
that F and F ′ are independent and G and G′ are
also independent, then ωF 7→ [F (ωF), F ′(ωF)] and

7

ωG 7→ [G(ωG), G′(ωG)] are indistinguishable ran-
dom variables; moreover, if α, β : strings → strings
are functions that preserve ≈ (i.e. α ◦ F ≈ α ◦ G
and β ◦ F ≈ β ◦ G whenever F ≈ G),
then ωF 7→ [(α ◦ F)(ωF), (β ◦ F)(ωF)] and
ωG 7→ [(α ◦ G)(ωG), (β ◦ G)(ωG)] are indistin-
guishable random variables if F ≈ G.

Indistinguishability needs to satisfy some further
properties under encryption and decryption that we
will specify under the definition of encryption schemes
below.

Example 6.1. The simplest example for indistin-
guishability is that it holds between two random vari-
ables if and only if their distributions are identical.

Example 6.2. The standard notion of computational
indistinguishability in [21] is also a special case of the
general definition. In this case strings = ({0, 1}∗)∞ =
strings∞. Random variables of computational interest
have the form F : ΩF → strings∞ and have indepen-
dent components; i.e., for η ∈ N security parameter, de-
noting the η’th component of F by Fη : ΩF → strings,
it is required that Fη and Fη′ are independent ran-
dom variables for η 6= η′. Indistinguishability then is
phrased with the ensemble of probability distributions
of the components of the random variables.

Definition 6.3. An encryption scheme is a quadru-
ple Π = ({Ki}i∈I , E,D,≈) where {Ki}i∈I is a set of
key-generations for some index set I, E is an encryp-
tion, D decrypts ciphertexts encrypted by E, and
≈ is the indistinguishability defined above. We re-
quire that for any i ∈ I, the probability distribu-
tion of Ki be distinguishable from any constant in
strings, the distributions of Ki and of Kj be distin-
guishable whenever i 6= j, and also that the distribu-
tion of (k, k′) be distinguishable from the distribu-
tion of (k, k) if k and k′ are independently generated:
k

R←− Ki, k′ R←− Kj for any i, j ∈ I. The indistin-
guishability relation ≈, besides satisfying the prop-
erties stated before, needs to be such that if F and
G are random variables taking values in strings,
and Ki is a key-generation such that the distribu-
tion of [Ki, F] is indistinguishable from the distribu-
tion of [Ki, G], then:
(i) (ωE , ωK,i, ω) 7→ EKi(ωK,i)

(
F (ω)

)
(ωE) and

(ωE , ωK,i, ω) 7→ EKi(ωK,i)

(
G(ω)

)
(ωE) are indistin-

guishable random variables;
(ii) (ωK,i, ω) 7→ DKi(ωK,i)

(
F (ω)

)
and (ωK,i, ω) 7→

DKi(ωK,i)

(
G(ω)

)
are also indistinguishable ran-

dom variables.
Here the probability over ΩKi × ΩF is the joint prob-
ability of Ki and F , which are here not necessarily
independent. Similarly for G.

6.1. Equivalence of Expressions

In their treatment, Abadi and Rogaway defined
equivalence of expressions via replacing encryption
terms encrypted with non-recoverable keys in an ex-
pression by a box; two expressions then were declared
equivalent if once these encryption terms were re-
placed, the received patterns looked the same up to
key-renaming. This method implicitly assumes, that an
adversary cannot distinguish any undecryptable terms.
However, if we want to allow leaking of partial informa-
tion, we need to modify the definition of equivalence.

Before introducing our notion of equivalence of ex-
pressions, we postulate an equivalence notion ≡K on
the set of keys, and another equivalence, ≡C on the set
of valid encryption terms. The word valid, defined pre-
cisely below, is meant for those encryption terms (and
expressions) that “make sense”. Then, the equivalence
on the set of valid expressions will be defined with the
help of ≡K and ≡C.

The reason for postulating equivalence on the set of
keys is that we want to allow many key-generation pro-
cesses in the probabilistic setting. We therefore have to
be able to distinguish formal keys that were generated
by different key-generation processes. Therefore, we as-
sume that an equivalence relation ≡K is given on the
set of keys such that each equivalence class contains in-
finitely many keys. Let QKeys := Keys

/≡K.

Definition 6.4. A bijection σ : Keys → Keys is
called key-renaming function, if σ(K) ≡K K for all
K ∈ Keys. For any expression M , Mσ denotes the ex-
pression obtained by changing all keys in M to their
images via σ.

The set Exp is often too big to suit our purposes.
For example, sometimes we require that certain mes-
sages can be encrypted with certain keys only. We
therefore define the set of valid expressions:

Definition 6.5. A set of valid expressions is a sub-
set ExpV of Exp such that:
(i) all keys and all blocks are contained in ExpV ;
(ii) if M ∈ ExpV then sub(M) ⊂ ExpV and any num-
ber of pairs of elements in sub(M) are also in ExpV ;
and
(iii) for any key-renaming function σ, M ∈ ExpV iff
Mσ ∈ ExpV . Given a set of valid expressions, the set
of valid encryption terms is EncV := Enc ∩ExpV .

Equivalence of valid expressions is meant to incorpo-
rate the notion of security into the model: we want two
expressions to be equivalent when they look the same
to an adversary. If we think that the encryption is so
secure that no partial information is revealed, then all

8

undecryptable terms should look the same to an ad-
versary. If partial information, say repetition of the en-
crypting key, or length is revealed, then we have to
adjust the notion of equivalence accordingly. We do
this by introducing an equivalence relation on the set
of valid encryption terms in order to capture which
ciphertexts an adversary can and cannot distinguish;
in other words, what partial information (length, key,
etc...) can an adversary retrieve from the ciphertext.

Hence, from now on, we assume that there is an
equivalence relation, ≡C given on the set of valid en-
cryption terms, with the property that for any M, N ∈
EncV and σ key-renaming function, M ≡C N if and
only if Mσ ≡C Nσ. Let QEnc := EncV

/≡C.
Since we required that M ≡C N ∈ EncV , if and

only if Mσ ≡C Nσ whenever σ is a key-renaming func-
tion, σ induces a renaming on QEnc, which we also de-
note by σ.

Example 6.6. We will consider encryption schemes
where an adversary can recognize when two encryp-
tion terms were encrypted with different keys. For this
case, we will need to define ≡C so that two encryp-
tion terms are equivalent if and only if they are en-
crypted with the same key.

Example 6.7. In [18], the authors find it useful to de-
fine a length-function on Exp by specifying l(K) := 1
for K ∈ Keys, l(B) := 1 for B ∈ Blocks, l((M, N)) :=
l(M)+l(N), and l({M}K) := l(M)+1. Two encryption
terms are then considered to be indistinguishable for an
adversary if and only if they have the same length. In
this case, we define ≡C so that it equates encryption
terms with the same length, and hence an element of
QEnc will contain all encryption terms that have a spe-
cific length.

Definition 6.8. A formal logic for symmetric encryp-
tion is a triple ∆ = (ExpV ,≡K,≡C) where ExpV is
a set of valid expressions, ≡K is an equivalence rela-
tion on Keys, and ≡C is an equivalence relation on
EncV ; we require the elements of QKeys to be infinite
sets, and that for any σ key renaming function rela-
tive to QKeys,
(i) if M ∈ Exp, then M ∈ ExpV if and only if
Mσ ∈ ExpV ;
(ii) if M, N ∈ EncV , then M ≡C N if and only if
Mσ ≡C Nσ; and
(iii) replacing an encryption term within a valid ex-
pression with another equivalent valid encryption term
results in a valid expression.

To define the equivalence of expressions, we first as-
sign to each valid expression an element in the set of
patterns, Pat, defined the following way:

Definition 6.9. Let the set of patterns defined by the
following grammar:

Pat ::= Keys | Blocks | (Pat,Pat) | {Pat}Keys |
| ¤QEnc

Definition 6.10. For a valid expression M , the pat-
tern of M , pattern(M), is obtained by replacing each
undecryptable term {M ′}K v M (K /∈ R-Keys(M))
by ¤µ({M ′}K), where µ({M ′}K) ∈ QEnc denotes the
equivalence class containing {M ′}K .

We say that two valid expressions M and N are
equivalent, and denote it by M ∼= N , if there is a
key-renaming σ such that pattern(M)σ = pattern(N),
where for any pattern Q, Qσ denotes the pattern ob-
tained by renaming all the keys and the box-indexes
(which are equivalence classes in QEnc) in Q with σ.

Example 6.11. In the case when the elements ofQEnc

contain encryption terms encrypted with the same key,
there is a one-to-one correspondence betweenQEnc and
Keys, and therefore we can index the boxes with keys
instead of the elements in QEnc: ¤K , K ∈ Keys. Then
if N is the same expression as in Example 4.3, the pat-
tern according to the above definition is the same as
we had in that example. M and N there are equiva-
lent according to our definition of equivalence above.

6.1.1. Proper Equivalence of Ciphers In order to
make the soundness and completeness proofs work, we
need to have some restrictions on ≡C; without any re-
strictions, the proofs will never work. The condition
that we found the most natural for our purposes is
what we called proper equivalence, defined below. This
condition will make soundness work. For completeness,
besides proper equivalence, we need to assume some-
thing for the relationship of ≡C and ≡K. We call our
assumption independence, and it is defined in Defini-
tion 6.17.

Definition 6.12. We say that an equivalence relation
≡C on EncV is proper, if for any finite set of keys S, if
µ ∈ QEnc contains an element of the form {N}K with
K /∈ S, then µ also contains an element C such that
Keys(C) ∩ S = ∅, and K 6v C.

In other words, if µ contains an element encrypted
with a key K not in S, then µ has a representative in
which no key of S appears, and in which K may only
appear as an encrypting key, but not as a subexpres-
sion.

Example 6.13. The equivalence ≡C of Example 6.6
and of Example 6.7 are both proper.

The following propositions that we present here are
needed for proving our general soundness and com-
pleteness results. In order to be able to state them,

9

for each µ ∈ QEnc, we introduce the set µkey :=
{K ∈ Keys | there is a valid expression M such that
{M}K ∈ µ}. Full proofs can be found in [4]

Proposition 6.14. Let ∆ = (ExpV ,≡K,≡C) be such
that ≡C is proper. Then, the equivalence relation ≡C

is such that for any equivalence class µ ∈ QEnc, µkey

has either one, or infinitely many elements.

Proposition 6.15. Let ∆ = (ExpV ,≡K,≡C) be such
that ≡C is proper. If σ is a key-renaming function (rela-
tive to ≡K), then for any µ ∈ QEnc, |µkey| = |σ(µ)key|.

The most important proposition about properness
is the following:

Proposition 6.16. Let ∆ = (ExpV ,≡K,≡C) be such
that ≡C is proper. Let C = {{Ni}Li}n

i=1 be a set of
valid encryption terms, and S a finite set of keys with
Li /∈ S (i ∈ {1, ..., n}). Let µ(C) denote the set of
all equivalence-classes with respect to ≡C of all ele-
ments in C. Then, for each ν ∈ µ(C), there is an ele-
ment Cν ∈ ν such that:
(i) Keys(Cν) ∩ S = ∅ for all ν ∈ µ(C),
(ii) Li 6v Cν for all i ∈ {1, ..., n} and all ν ∈ µ(C),
(iii) if ν 6= ν′, then Keys(Cν) ∩ Keys(Cν′) 6= ∅ if
and only if νkey = ν′key = {K} (the set containing
K only) for some key K, and in that case Keys(Cν) ∩
Keys(Cν′) = {K}. Then, Cν and Cν′ are both of the
form {·}K with the same K, and K 6v Cν , K 6v Cν′ .

Given sets C and S as in the conditions of the propo-
sition, let R(C, S) denote the nonempty set R(C, S) :=
{{Cν}ν∈µ(C) | Cν ∈ ν, and {Cν}ν∈C and S satisfy con-
ditions (i), (ii), (iii) of Proposition 6.16}.

Another useful property, satisfied in our applica-
tions, and that we will need for the completeness re-
sult, is the following:

Definition 6.17. We say that ≡K and ≡C are inde-
pendent, if for any finite set of keys S, and any finite set
C of encryption terms such that no key in S appears in
any element of C, given any key-renaming function σ,
there is a key renaming σ′ for which σ′(K) = K when-
ever K ∈ S, and for all C ∈ C, Cσ ≡C Cσ′.

Example 6.18. The trivial ≡K equating all keys and
the equivalence ≡C of Example 6.6 and of Example 6.7
are independent in both cases.

6.2. Interpretation

The idea of the interpretation is to describe mes-
sages that are built from blocks of strings and keys via
pairing and encryption. To each valid formal expression
M , the interpretation assigns a random variable Φ(M)

taking values in strings. We do not give one specific in-
terpreting function though, we will just say that a func-
tion Φ is an interpretation if it satisfies certain proper-
ties. We assume, that a function φ is fixed in advance,
which assigns to each formal key a key-generation algo-
rithm. If Φ(B) ∈ strings (constant random variable)
is given for blocks, then, the rest of Φ is determined
the following way: First, run the key-generation algo-
rithm assigned by φ for each key in Keys(M). Then,
using the outputs of these key-generations, translate
the formal expressions according to the following rules:
Each time you see a key, use the output of the cor-
responding key-generation. For blocks, just use Φ(B).
When you see a pairing, pair with [·, ·] the interpreta-
tions of the expressions inside the formal pair. When
you see a formal encryption, run the encryption algo-
rithm using the key string that was output by the key
generation, encrypting the interpretation of the formal
expression inside the formal encryption. The random-
ness of Φ(M) comes from the initial key-generation,
and from running the encryption algorithm indepen-
dently every time you encounter a formal encryption.
The precise definition is quite technical and we included
that in the Appendix. Here we try to make it clear via
an example:

Example 6.19. For M = (({0}K10 ,K5), {K10}K5),
the interpretation is Φ(M) : (ΩE × ΩE) × (Ωφ(K5) ×
Ωφ(K10)) → strings, Φ(M)(ω1, ω2, ω3, ω4) =
[[Eφ(K10)(ω4)(Φ(0))(ω1), φ(K5)(ω3)], Eφ(K5)(ω3)(
φ(K10)(ω4))(ω2)]. There are four instances of random-
ness, two coming from the generating a key twice (for
K5 and for K10), and encrypting twice.

6.3. Soundness and Completeness

An interpretation assigns a random variable Φ(M)
(and the distribution [[M]]Φ of Φ(M)) to a formal valid
expression M . On the set of valid expressions the equiv-
alence ∼= equates expressions that a formal adversary
supposedly cannot distinguish, whereas the equivalence
≈ equates random variables (and distributions) that a
probabilistic adversary is not supposed to be able to
distinguish. The question is, how the formal and the
probabilistic equivalence are related through the inter-
pretation. We say that soundness holds if M ∼= N im-
plies [[M]]Φ ≈ [[N]]Φ, whereas we say that completeness
holds if [[M]]Φ ≈ [[N]]Φ implies M ∼= N .

The key to a soundness theorem is to have enough
boxes in the definition of formal equivalence, i.e., there
should be enough elements in QEnc. It is clear that in
the extreme case, when the equivalence on encryption
terms, ≡C, is defined so that two encryption terms are
equivalent iff they are the same, then soundness holds

10

trivially for all interpretations; but this would be com-
pletely impractical, it would assume a formal adver-
sary that can see everything inside every encryption.
It is also immediate, that if soundness holds with a
given ≡C (and a given interpretation), and ≡′C is such
that for any to encryption terms M,N , M ≡′C N im-
plies M ≡C N (ı.e. ≡′C results more boxes), then, keep-
ing the same interpretation, soundness holds with the
new ≡′C as well. Hence, in a concrete situation, the
aim is to introduce enough boxes to achieve soundness,
but not too many, to sustain practicality. One way to
avoid having too many boxes is to require complete-
ness: we will see later, that obtaining completeness re-
quires not to have too many boxes.

The following theorem claims the equivalence of two
conditions. It is almost trivial that condition (i) im-
plies condition (ii). The claim that (ii) implies (i) can
be summarized the following way: if soundness holds
for pairs of valid expressions M,M ′ with a special re-
lation between them (described in (ii)), then sound-
ness holds for all expressions (with certain acyclicity).
In other words, if M ∼= M ′ implies [[M]]Φ ≈ [[M ′]]Φ
for certain specified pairs M,M ′, then M ∼= N im-
plies [[M]]Φ ≈ [[N]]Φ for any two pairs of valid expres-
sions M, N (with certain acyclicity).

For the definition of R(C, S), see Section 6.1.1.

Theorem 6.20. Let ∆ = (ExpV ,≡K,≡C) be a for-
mal logic for symmetric encryption such that for
each M ∈ ExpV , B-Keys(M) is not cyclic in M . As-
sume that ≡C is proper. Let Π = ({Ki}i∈I , E,D,≈)
be a general encryption scheme, Φ an interpretation of
ExpV in Π. Then the following conditions are equiva-
lent:
(i) Soundness holds for Φ: M ∼= N , implies
Φ(M) ≈ Φ(N).
(ii) For any C = {{Ni}Li}n

i=1 set of valid en-
cryption terms, and S finite set of keys with
Li /∈ S (i ∈ {1, ..., n}), there is an element
{Cν}ν∈µ(C) of R(C, S) such that the followings

hold: if
{{Nij}K

}l

j=1
⊂ C and M ∈ ExpV are

such that (1) {Ni1}K , {Ni2}K , ..., {Nil
}K v M ,

(2) R-Keys(M) ⊂ S, (3) K does not occur any-
where else in M , and if we denote by M ′ the expres-
sion obtained by replacing in M each {Nij}K with
Cµ({Nij

}K), then [[M]]Φ ≈ [[M ′]]Φ.

The proof of this theorem is motivated by the sound-
ness proof in [2]. Full proof can be found in [4].

The idea of the proof is the following: Starting from
two acyclic expressions M0 = M ∼= N = N0, we cre-
ate expressions M1, ..., Mb and N1, ..., Nb′ such that
Mi+1 is received from Mi via a replacement of en-
cryption terms as described in condition (ii). Acyclic-

ity ensures that the encrypting key of the replaced en-
cryption terms will not occur anywhere else. Similarly
form Ni+1 and Ni. We do this so that Mb and Nb′

will differ only in key renaming. Then, by condition
(ii), [[Mi+1]]Φ ≈ [[Mi]]Φ, and [[Ni+1]]Φ ≈ [[Ni]]Φ. But,
[[Mb]]Φ = [[Nb′]]Φ, and therefore the theorem follows.

Remark 6.21. The paper of Laud [13] addresses the
possibility of getting rid of the acyclicity assumption.
In order to obtain soundness for expressions with cy-
cles, he leaves undecryptable terms that are encrypted
by keys in cycles untouched (i.e. he does not replace
these encryption terms with boxes). We could have pro-
ceeded the same way in our treatment as well. However,
as Laud points it out, not replacing those encryption
terms with boxes means that the adversary can de-
crypt them, which is not a reasonable assumption in
general, therefore we included the acyclicity assump-
tion.

Example 6.22. The soundness theorem we presented
earlier for type-2 encryption schemes is a special case
of the theorem above. In this case ExpV = Exp; the
equivalence relation ≡C is as in Example 6.6, which is
proper as we mentioned in Example 6.13; the equiva-
lence relation ≡K is trivial here, all keys are equiva-
lent. The elements µ ∈ QEnc are in one-to-one corre-
spondence with the keys, so we can say QEnc ≡ Keys,
and thus the boxes are labeled with keys. Φ here gives
an interpretation in the computational setting. Then
for a set C = {{Ni}Li}n

i=1 as in condition (ii) of the
theorem, we can take CLi := {0}Li , and then condi-
tion (ii) is satisfied, because the following proposition
holds (full proof can be found in [4]):

Proposition 6.23. Consider an expression M , and a
key L ∈ Keys(M). Suppose that for some expressions
M1,M2, ..., Ml ∈ Exp, {M1}L, {M2}L, ..., {Ml}L v
M , and assume also that L does not occur anywhere
else in M . Then, denoting by M ′ the expression that
we get from M by replacing each of {Mi}L that are not
contained in any of Mj (j 6= i) by {0}L, [[M]]Φ ≈ [[M ′]]Φ
holds.

Hence, condition (ii) of the general soundness theo-
rem is satisfied, so soundness holds for the type-2 case.

Example 6.24. Here we indicate that there is a for-
mal logic for symmetric encryption such that we re-
ceive soundness as a special case of the above theorem
when interpreting it in the One-Time Pad implementa-
tion presented in section 5. The formal equivalence we
introduced for One-Time Pad in section 5 derives from
taking the equivalence on encryption terms according
to their length. However, the soundness part of theorem
5.5 then will not be a special case of our general theo-

11

rem. So let us instead define ≡C so that two encryption
terms are equivalent, iff (again) the encryption terms
have the same encrypting key. The equivalence of keys,
≡K is defined with the help of a length-function l on
the keys: two keys are equivalent iff they have the same
length. Then the boxes will again be indexed by the en-
crypting keys. Then for a set C = {{Ni}Li}n

i=1 as in
condition (ii), take CLi

:= {0l(Li)−3}Li
(where 0l(Li)−3

means l(Li)− 3 many 0’s). It is not hard to check that
within this setting, condition (ii) of the soundness the-
orem is satisfied.

Example 6.25. For a discussion on type-1 schemes,
recall now Example 6.7, where we cited the length-
function Micciancio and Warinschi used in [18]. They
assumed that the encryption scheme views the plain-
text as a sequence of basic message blocks, and that a
ciphertext is one block longer then the corresponding
plaintext. (Practical encryption schemes such as CBC
or CTR satisfy this property.) For the interpretation,
they assumed that block symbols as well as key symbols
are mapped to bit strings of size equal to one basic mes-
sage block. The equivalence of encryption terms, ≡C,
for type-1 case is defined so that equivalence holds iff
the formal length of the encryption terms are the same.
This gives a proper equivalence. It is not very hard to
see that condition (ii) of our general soundness theo-
rem is satisfied.

It is clear that in order to be able to define equiv-
alence on encryption terms according to length, some
length-function is needed to track the change in length
via pairing and encrypting. This was easy in the pre-
vious example. However, in general, it is not necessar-
ily true that a formal length-function can be defined.
The problem is, that a length-function assigns a spe-
cific length to each expression, whereas an interpre-
tation of an expression, which is a random variable,
may have varying length. For example, in case of the
One-Time Pad, the keys may be generated uniformly
such that the length of the outcome of a key-generation
varies (but, we have to require that the encrypting key
is at least as long as the plaintext); the length of an en-
cryption term will also vary then.

If the encryption scheme is such that for a fixed secu-
rity parameter the size of the ciphertext depends only
on the size of the plaintext, then it is possible to in-
troduce a length-function on formal expressions that
assign a sequence of length to each expression, each el-
ement of the sequence corresponding to a value of the
security parameter. This length function again defines
an equivalence relation, the boxes can be indexed by
the sequences, and if the length function was chosen
well, then soundness will follow.

Another way of dealing with length is to index the

boxes with the type-tree of the replaced encryption
term (i.e. two encryption terms are equivalent if their
type-trees are identical) as Herzog did in [9].

Example 6.26. For type-3 encryption schemes, equiv-
alence on encryption terms are defined so that equiv-
alence holds iff the encrypting keys and the lengths of
the encryption terms agree; this is a proper equiva-
lence. Then, again, condition (ii) of the general the-
orem holds.

We finally present our completeness result. Condi-
tion (ii) is equivalent to what the authors in [11] call
weak key-authenticity. A full proof of this theorem is
available in [4].

Theorem 6.27. Let ∆ = (ExpV ,≡K,≡C) be a for-
mal logic for symmetric encryption, assume that ≡C

is proper and that ≡K and ≡C are independent. Let Φ
be an interpretation in Π = ({Ki}i∈I , E, D,≈). Then,
completeness of Φ holds, if and only if the following
conditions are satisfied : For any K, K ′,K ′′ ∈ Keys,
B ∈ Blocks, M,M ′, N ∈ ExpV ,
(i) no pair of [[K]]Φ, [[B]]Φ, [[(M, N)]]Φ, [[{M ′}K′]]Φ
are equivalent with respect to ≈; that is, keys,
blocks, pairs, encryption terms are distinguish-
able,
(ii) if [[(K, {M}K)]]Φ ≈ [[(K ′′, {M ′}K′)]]Φ, then
K ′ = K ′′,
(iii) For any two pairs of valid encryption
terms: {{Mi}Li}2i=1 and {{Ni}L′i}2i=1, from
[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L′1 , {N2}L′2)]]Φ it
follows that ({M1}L1 , {M2}L2) ∼= ({N1}L′1 , {N2}L′2).

The proof consists of two separate parts. In the first,
it is shown that conditions (i) and (ii) imply that if M
and N are valid expressions and [[M]]Φ ≈ [[N]]Φ, then
there is a key-renaming σ, such that apart from the
boxes, everything else in the patterns of M and Nσ
are the same, and the boxes in the two patterns must
be in the same positions. Moreover, condition (iii) im-
plies that picking any two boxes of the pattern of Nσ,
there is a key-renaming σ1 such that applying it to
the indexes of these boxes, we obtain the correspond-
ing boxes in the pattern of M . Then the theorem fol-
lows, if we prove that using these pairwise equivalences
of the boxes, we can construct a σ′ that leaves the keys
of Nσ outside the boxes untouched, and it maps the
indexes of all the boxes of Nσ into the indexes of the
boxes of M .

Remark 6.28. Observe, that condition (iii) of the the-
orem is trivially satisfied when there is only one box,
that is, when all encryption terms are equivalent under
≡C. Also, if completeness holds for a certain choice of
≡C, then, if ≡′C is such that M ≡C N implies M ≡′C N

12

– i.e. when ≡′C results fewer boxes –, then complete-
ness holds for ≡′C as well. Therefore, we can say, that
the key to completeness is not to have too many boxes.

Example 6.29. The completeness part of our earlier
theorem for type-2 encryption schemes is clearly a spe-
cial case of this theorem, because the formal language
we introduced for type-2 schemes is such that ≡C is
proper and ≡K and ≡C are independent.

Example 6.30. The formal logic for OTP that we pre-
sented in Example 6.24 is such that ≡C is proper
and ≡K and ≡C are independent. Furthermore, con-
dition (i) of Theorem 6.27 is satisfied due to the
tagging we presented in Section 5. Condition (ii)
is also satisfied because of the tagging: the rea-
son ultimately is that decrypting with the wrong
key will sometimes result invalid endings. Condi-
tion (iii) is also satisfied, since the pairs of encryption
terms must be encrypted with different keys (in OTP,
we cannot use the keys twice), and the equivalence
[[({M1}L1 , {M2}L2)]]Φ ≈ [[({N1}L′1 , {N2}L′2)]]Φ im-
plies that the corresponding lengths in the two encryp-
tion terms must be the same: l({M1}L1) = l({N1}L′1)
and l({M2}L2) = l({N2}L′2) which implies
(¤l({M1}L1), ¤l({M2}L2)) = (¤l({N1}L′1

), ¤l({N2}L′2
)).

Therefore, ({M1}L1 , {M2}L2) ∼= ({N1}L′1 , {N2}L′2).
In conclusion, the formal logic introduced in Exam-
ple 6.24 is complete.

Example 6.31. In case of type-1 encryption schemes,
if we assume that the length is revealed, that is the
distributions of Ek(x) and Ek(y) can be distinguished
when x and y have different length (we can call this
condition strictly length revealing), then the corre-
sponding condition (iii) is satisfied for this case. There-
fore, if the encryption scheme is such that conditions
(i) and (ii) are also satisfied, then completeness holds
for the formal logic and its interpretation if the boxes
are indexed with the length of the encryption term.

As for the type-3 system, completeness holds if we
assume that the system satisfies conditions (i) and (ii),
and when it not just might reveal which-key and length,
but it does really reveal both of them, that is, when it
is strictly which-key revealing and strictly length re-
vealing.

7. Conclusions and Further Work

We have studied expansions of the Abadi-Rogaway
logic of indistinguishability of formal cryptographic ex-
pressions. We have showed that, at least in the case
of symmetric encryption, subtle distinctions among se-
curity levels of computational or information-theoretic
encryption schemes can be faithfully reflected in the

formal symbolic setting. We have introduced a general
probabilistic framework, which includes both the com-
putational and the information-theoretic encryption
schemes as special cases. We have established sound-
ness and completeness theorems in this general frame-
work, as well as new applications to specific settings: an
information-theoretic interpretation of formal expres-
sions in One-Time Pad, and also computational inter-
pretations in type-2 (which-key revealing) and type-3
(which-key and length revealing) encryption schemes
based on computational complexity.

Because our theorems apply to weak encryption
schemes, they also apply to strong, e.g., CCA2-secure
encryption schemes. However, the chosen ciphertext at-
tacks or attacks exploiting malleability lie outside of
the Abadi-Rogaway formal setting because its message
space is rather parsimonious. We are exploring vari-
ous expansions of the formal setting that would allow
certain operations on bit strings such as xor, pseudo-
random permutations, or exponentiation, in order to
extend our soundness and completeness techniques to
such richer formal settings. In particular, the defini-
tion of patterns appears to be rather subtle in such
richer settings. We would also like to understand how
our methods fit with the methods of [16].

We are also considering analogs of our results for
asymmetric encryption. We do not foresee major obsta-
cles in this direction. We also plan to extend our meth-
ods and investigate formal treatment of other crypto-
graphic primitives. It would be interesting to see if our
methods could be combined with the methods of [3, 5].

The problems related to cyclicity of keys, which lie
beyond the scope of this paper, also deserve our atten-
tion. We are addressing these problems in our current
work with Jonathan Herzog, in preparation.

References

[1] M. Abadi and J. Jürjens. Formal eavesdropping and
its computational interpretation. In Proc. 4th Interna-
tional Symposium on Theoretical Aspects of Computer
Software (TACS), volume 2215 of LNCS, pages 82–94,
Sendai, Japan, 2001. Springer.

[2] M. Abadi and P. Rogaway. Reconciling two views
of cryptography (the computational soundness of for-
mal encryption). Journal of Cryptology, 15(2):103–127,
2002. Preliminary version presented at IFIP TCS 2000.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A compos-
able cryptographic library with nested operations. In
Proc. 10th ACM Conference on Computer and Commu-
nications Security (CCS), pages 220–230, Washington
D.C., USA, 2003. ACM Press. Full version available at
IACR ePrint Archive, Report 2003/015, January 2003.

[4] G. Bana. Soundness and Completeness of For-
mal Logics of Symmetric Encryption. PhD the-

13

sis, University of Pennsylvania, 2004. Available
at www.math.upenn.edu/∼bana/banaphdthesis.pdf.
Also available at IACR ePrint Archive.

[5] R. Canetti. Universally composable security: A
new paradigm for cryptographic protocols. In 42nd
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 136–145, Las Vegas, NV, USA, 2001.
IEEE Computer Society. Full version available at IACR
ePrint Archive, Report 2000/067.

[6] V. Cortier and B. Warinschi. Computationally sound,
automated proofs for security protocols. In Proc. 14th
European SymposiumonProgramming (ESOP), volume
3444 of LNCS, pages 157–171, Edinburgh, UK, 2005.
Springer.

[7] D. Dolev and A. C. Yao. On the security of public-key
protocols. IEEE Transactions on Information Theory,
29(2):198–208, 1983. Preliminary version presented at
FOCS’81.

[8] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and Systems Sciences, 28(2):270–
299, 1984. Preliminary version presented at STOC’82.

[9] J. Herzog. Computational Soundness for Standard As-
sumptions of Formal Cryptography. PhD thesis, Mas-
sachussets Institute of Technology, 2004. Available at
http://theory.lcs.mit.edu/∼jherzog/papers/
herzog-phd.pdf.

[10] J. Herzog, M. Liskov, and S. Micali. Plaintext aware-
ness via key registration. In Advances in Cryptology -
CRYPTO 2003, volume 2729 of LNCS, pages 548–564,
Santa Barbara, CA, USA, 2003. Springer.

[11] O.Horvitz andV.Gligor. Weakkeyauthenticity and the
computational completeness of formal encryption. In
Advances inCryptology -CRYPTO2003, volume2729of
LNCS, pages 530–547, Santa Barbara, CA, USA, 2003.
Springer.

[12] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing
the picture: Soundness of formal encryption in the pres-
ence of active adversaries. In Proc. 14th European Sym-
posiumonProgramming (ESOP), volume3444ofLNCS,
pages 172–185, Edinburgh, UK, 2005. Springer.

[13] P. Laud. Encryption cycles and two views of cryptog-
raphy. In Proc. 7th Nordic Workshop on Secure IT Sys-
tems, number 31, pages 85–100,Karlstad, Sweden, 2002.
Karlstad University Studies.

[14] P. Laud and R. Corin. Sound computational interpreta-
tion of formal encryption with composed keys. In Proc.
6th International Conference on Information Security
and Cryptology (ICISC), volume 2971 of LNCS, pages
55–66, Seoul, Korea, 2003. Springer.

[15] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov.
A probabilistic polynomial-time framework for proto-
col analysis. In Proc. 5th ACM Conference on Computer
and Communications Security (CCS), pages 112–121,
San Francisco, CA, USA, 1998. ACM Press.

[16] U. Maurer. Indistinguishability of random systems. In
Advances in Cryptology - EUROCRYPT 2002, volume
2332 of LNCS, pages 110–132, Amsterdam, The Nether-
lands, 2002. Springer.

[17] D. Micciancio and S. Panjwani. Adaptive security of
symbolic encryption. In Proc. 2nd Theory of Cryptog-
raphy Conference (TCC), volume 3378 of LNCS, pages
169–187, Cambridge, MA, USA, 2005. Springer.

[18] D. Micciancio and B. Warinschi. Completeness the-
orems for the Abadi-Rogaway logic of encrypted ex-
pressions. Journal of Computer Security, 12(1):99–130,
2004. Preliminary version presented at WITS’02.

[19] D.Micciancio andB.Warinschi. Soundness of formal en-
cryption in the presence of active adversaries. In Proc.
1st Theory of Cryptography Conference (TCC), volume
2951 of LNCS, pages 133–151, Cambridge, MA, USA,
2004. Springer.

[20] B. Warinschi. A computational analysis of the
Needham-Schroeder protocol. InProc. 16th IEEE Com-
puter Security Foundations Workshop (CSFW), pages
248–262, Pacific Grove, CA, USA, 2003. IEEE Com-
puter Society.

[21] A. C. Yao. Theory and applications of trapdoor func-
tions. In 23rd IEEESymposiumonFoundations of Com-
puter Science (FOCS), pages 80–91, Chicago, IL, USA,
1982. IEEE Computer Society.

A. Appendix

Algorithmic Interpretation of Expressions for
Type-2 Systems

algorithm INTERPRETATION(η, Q)
for K ∈ Keys(Q) do τ(K) R←− Kη

y
R←− CONVERT(Q)

return y

algorithm CONVERT(Q)
if Q = K where K ∈ Keys then

return τ(K)
if Q = B where B ∈ Blocks then

return B
if Q = (Q1, Q2) then

x
R←− CONVERT(Q1)

y
R←− CONVERT(Q2)

return [x, y]
if Q = {Q1}K then

x
R←− CONVERT(Q1)

y
R←− Eτ(K)(x)

return y

Algorithmic Interpretation of Expressions for
One-Time Pad

algorithm INTERPRETATIONOTP(M)
for K ∈ Keys(M) do τ(K) R←− Kl(K)

y
R←− CONVERTOTP(M)

14

return y

algorithm CONVERTOTP(N)
if N = K where K ∈ Keys then

return τ(K)
if N = B where B ∈ Blocks then

return 〈B, 100〉
if N = (N1, N2) then

return [CONVERTOTP(N1),
CONVERTOTP(N2)]

if N = {N1}K then
return
〈Eτ(K)(CONVERTOTP(N1)), 110〉

Definition A.1 (Interpretation of Formal Ex-
pressions). Let Π = ({Ki}i∈I , E,D,≈) be a general
symmetric encryption scheme with some index set I,
with {(ΩKi , PrKi)}i∈I denoting the probability fields
for key generation, and with (ΩE , PrE) denoting the
probability field for the randomness of encryption. Let
ExpV be a set of valid expressions. For each valid ex-
pression M , let the probability space (ΩM ,PrM) be de-
fined recursively as

(ΩK ,PrK) := ({ω0},1{ω0}) for K ∈ Keys;
(ΩB , PrB) := ({ω0},1{ω0}) for B ∈ Blocks;
(Ω(M,N),Pr(M,N)) := (ΩM × ΩN ,PrM ⊗ PrN);
(Ω{M}K

,Pr{M}K
) := (ΩE × ΩM ,PrE ⊗ PrM).

Where ({ω0},1{ω0}) is just the trivial probability-space
with one elementary event, ω0 only; the tensor product
stands for the product probability. Suppose that a func-
tion φ : Keys → {Ki}i∈I is given assigning key gener-
ations to abstract keys, such that φ(K) = φ(K ′) if and
only if K ≡K K ′. Let ι : {1, .., |Keys(M)|} → Keys(M)
be a bijection enumerating the keys in Keys(M). Let

(ΩKeys(M) , PrKeys(M)) :=(
Ωφ(ι(1)) × ...× Ωφ(ι(|Keys(M)|)),
Prφ(ι(1)) ⊗ ...⊗ Prφ(ι(|Keys(M)|))

)
.

The function (M,M ′) 7→ (ΦM (M ′) : ΩM ′ ×
ΩKeys(M) → strings) defined whenever M ′ v M , is
called an interpreting function, if it satisfies the follow-
ing properties:

ΦM (B)(ω0, ω) = ΦN (B)(ω0, ω
′) for all M , N valid

expressions, B ∈ Blocks, B v M , B v N ,
and arbitrary ω ∈ ΩKeys(M), ω′ ∈ ΩKeys(N). Let
Φ(B) := ΦM (B).

ΦM (K)(ω0, (ω1, ..., ω|Keys(M)|)) = φ(K)(ωι−1(K))
for K ∈ Keys(M), with ωj ∈ Ωφ(ι(j)).

ΦM ((M ′,M ′′))((ω′, ω′′), ω) =
= [ΦM (M ′)(ω′, ω), ΦM (M ′′)(ω′′, ω)] for all ω′ ∈

ΩM ′ , ω′′ ∈ ΩM ′′ , and ω ∈ ΩKeys(M) if (M ′, M ′′) v
M .

ΦM ({M ′}K)((ωE , ω′), ω) =
= EΦM (K)(ω0,ω)(ΦM (M ′)(ω′, ω))(ωE) for all ωE ∈
ΩE , ω′ ∈ ΩM ′ , ω ∈ ΩKeys(M) if {M ′}K v M .

Let Φ(M) := ΦM (M), and let [[M]]Φ denote the distri-
bution of Φ(M).

Clearly, the definition is not necessarily well-defined
depending on what DomE is. We simply assume, that
DomE is such that this does not cause a problem, (an-
other possibility is to restrict the set of valid expres-
sions to those elements for which the interpretation is
well-defined).

15

